China Pharma Pure Powder manufacturer

Liraglutide 98% Api Active Principle Ingredient Antidiabetic Function 204656-20-2

Product Details:
Place of Origin: Xi'an ,China
Brand Name: Wango
Model Number: WG-0031
Payment & Shipping Terms:
Minimum Order Quantity: 10gram every time
Price: FOB price USD48-60 /gram,price ,can be negotiable freely .
Packaging Details: 1mg,1g,10g small bottle ,1kg with double plastic container inside/Aluminum foil bag .Or as your request.
Delivery Time: 3-5 working days
Payment Terms: Western Union, L/C, T/T, MoneyGram
Supply Ability: 10kilogram 0ne month

Detail Information

Appearence: White Crystal Powder Other Name: Semaglutide
Packing: 1mg,1g,10g Small Bottle Function: Antidiabetic Treatments
High Light:

Liraglutide Api Active Principle Ingredient

,

Api Active Principle Ingredient Antidiabetic

,

204656-20-2

Product Description

Liraglutide 98% purity Cas 204656-20-2 antidiabetic function chemical manufacturer with top quality !

Liraglutide 98% Api Active Principle Ingredient Antidiabetic Function 204656-20-2 0

Product Name

Liraglutide

Cas No.

204656-20-2

Sequence

H-His-Ala-Glu-Gly-Thr-Phe-Thr-Ser-Asp-Val-Ser-Ser-Tyr-Leu-Glu-Gly-Gln-Ala-Ala-Lys(N-ε-(Nα-Palmitoyl-L-γ-glutamyl))-Glu-Phe-Ile-Ala-Trp-Leu-Val-Arg-Gly-Arg-Gly-OH

Molecular Formula

C172H265N43O51

Molar Mass

3751.202 g/mol

Purity

≥98%

Impurity

≤0.5%

Storage Temperature

2-8ºC

Packing Size

100MG/Bottle, 1G/Bottle,10G/Bottle or at customers reqirement.

Pharmacodynamic and pharmacology properties

Liraglutide is an acylated GLP-1 analogue that shares 97 % amino acid sequence homology to human endogenous GLP-1 (7–37)[1–4]. The single amino acid substitution of lysine with arginine at position 34 and the attachment of a C16 fatty acid chain to lysine at position 26 enables liraglutide to self-associate and form a heptameric structure, which delays absorption from the subcutaneous injection site and provides protection against degradation by DPP-4 enzyme and neutral endopeptidases. As a consequence, liraglutide has a much longer half-life than endogenous GLP-1 (&13 h vs. 1.5–2 min)[1–4].
Liraglutide binds to and activates the GLP-1 receptor, which is a membrane bound cell-surface receptor coupled to adenyl cyclase by the stimulatory G-protein (Gs) in pancreatic b cells (but not in pancreatic a-cells) and is the target for endogenous GLP-1[1, 2]. This results in increased intracellular cyclic monophosphate and subsequent liraglutide dose-dependent insulin release in patients with elevated glucose levels. At the same time, liraglutide acts in a glucose-dependent manner to decrease inappropriately high glucagon secretion, thereby blocking the effects of glucagon on hepatic glucose output. In the presence of liraglutide, as blood glucose concentrations decrease, the secretion of insulin diminishes and blood glucose concentrations approach euglycaemia[1, 2]. In addition to these glucoregulatory mechanisms of action in patients with type 2 diabetes, liraglutide slightly delays gastric emptying, and reduces bodyweight and body fat mass by reducing hunger and lowering energy intake; these effects may contribute to the beneficial effects of liraglutide in patients with type 2-diabetes[1, 2, 5, 6]. As reviewed previously[1, 2], in patients with type 2 diabetes and/or in preclinical studies, liraglutide dosedependently reduced glycated haemoglobin (HbA1c), fasting plasma glucose (FPG) and postprandial plasma glucose levels, with sustained improvements in glucose levels over a 24-h dosage interval. In addition, liraglutide increased insulin secretion, reduced postprandial glucagon secretion, improved surrogate measures of b-cell function, reduced systolic blood pressure (SBP) and improved some biomarkers of cardiovascular (CV) risk in patients with type 2 diabetes[1, 2], including suppression of postprandial triglyceride and apolipoprotein B48 levels after a fat-rich meal[7]. Improvements in glycaemic control and other efficacy outcomes in adult patients with type 2 diabetes receiving liraglutide monotherapy or add-on therapies to other antidiabetic drugs in large phase III trials.

Pharmacokinetics properties

The pharmacokinetic profile of subcutaneous liraglutide did not differ to a clinically meaningful extent when different injection sites were used (upper arm, abdomen and thigh)[3]. Following subcutaneous administration, liraglutide was slowly absorbed, with maximum plasma concentrations (Cmax) attained after 8–12h[3, 4]. Liraglutide showed dose-proportional absorption across the therapeutic dose range of 0.6–1.8 mg[3, 4]. Mean Cmax and total exposure of liraglutide after a single 0.6 mg dose were 35 ng/mL and 960 ng??h/mL, respectively[3]. After a 1.8 mg dose, the average steady-state concentration of liraglutide over a 24-h period was 128 ng/mL[3]. Following subcutaneous administration, the mean apparent volume of distribution of liraglutide was 11–17 L[4]. The mean volume of distribution after intravenous administration was 0.07 L/kg[3, 4]. The absolute bioavailability of liraglutide following subcutaneous administration is approximately 55 %. Liraglutide is extensively bound to plasma protein following subcutaneous administration (98 %)[3, 4].
Liraglutide is metabolized in a manner similar to that of large proteins, with no specific organ identified as a major route of elimination[3, 4]. During the 24-h period following administration of a single radiolabelled dose of liraglutide to healthy volunteers, the major component in plasma was unchanged drug, with two minor plasma metabolites detected (B9 and B5 % of total plasma radioactivity exposure). No parent drug was detected in the faeces and urine. A minor portion of the radiolabelled dose was detected as liraglutide-related metabolites in the faeces (5 %) and urine (6 %) during the first 6–8 days after administration. The mean clearance following a single subcutaneous dose of liraglutide was approximately 1.2 L/ h and the mean elimination half-life was approximately 13 h, allowing for once-daily administration[3, 4].

Dosage and administration

Subcutaneous liraglutide is approved in several countries for the treatment of patients with type 2 diabetes, including in the USA[3] and Europe[4]. In the USA, subcutaneous liraglutide is indicated in patients with type 2 diabetes as an adjunct to the diet and exercise to improve glycaemic control[3]. In the EU, it is indicated for the treatment of adults with type 2 diabetes to achieve glycaemic control in combination with OADs and/or basal insulin when these, together with diet and exercise, do not provide adequate glycaemic control[4]. Liraglutide is not recommended as first-line therapy in patients with inadequate glycaemic control on diet and exercise[3].
Liraglutide is administered subcutaneously once daily at any time of the day, without regard to food[3, 4]. The initial starting dosage is 0.6 mg/day for 1 week; this low initial dosage is intended to reduce the risk of GI adverse events and is not effective for glycaemic control. After 1[3] or C1[4] week, the dosage of liraglutide should be increased to 1.2 mg/day and, thereafter, if the 1.2 mg/day doesn’t provide effective glycaemic control the dosage may be increased to 1.8 mg/day. If the drug is added to metformin alone or in combination with a thiazolidinedione, the dosages of these coadministered drugs may be continued unchanged. When initiating liraglutide treatment, consider reducing the dosage of concomitantly administered insulin secretagogues (such as sulfonylureas) or basal insulin to reduce the risk of hypoglycaemia [3, 4]. Although self-monitoring of glucose levels is not necessary for liraglutide, it should be considered when initiating liraglutide therapy in patients receiving concomitant sulfonylurea or basal insulin therapy to reduce the risk of hypoglycaemia[4]. No dosage adjustment is required in elderly patients (aged 65 years)[3, 4]. The efficacy of liraglutide in children and adolescents >18 years of age has not been established[3, 4]; in the USA, liraglutide is not recommended in paediatric patients[4]. In the EU, no dosage adjustment is required in patients with mild renal impairment (CLCR 60–90 mL/min) and there is very limited experience in those moderate or severe renal impairment; thus, liraglutide can currently not be recommended in these patients or in those with ESRD[4]. In the USA, it is recommended that liraglutide should be used with caution in patients with renal impairment, including those with ESRD, since there have been postmarketing reports of acute renal failure and worsening of chronic renal failure during liraglutide treatment[3]. No dosage adjustments are required in patients with renal impairment[3].

Tolerability

 

Subcutaneous liraglutide, as monotherapy or add-on therapy to antidiabetic drugs, was generally well tolerated in clinical trials and extension studies (B2 years’ treatment). Based on a pooled analysis of five double-blind trials (C26 weeks’ duration), 7.8 % of liraglutide recipients discontinued treatment because of adverse events compared with 3.4 % of patients in the comparator groups[3]. Nausea (2.8 % in liraglutide groups vs. 0 % in comparator groups) and vomiting (1.5 vs. 0.1 %) were the most common adverse reactions leading to treatment withdrawal, with most patients withdrawing within the first 2–3 months of liraglutide therapy. Most treatment-emergent adverse events occurring during liraglutide therapy were gastrointestinal (GI) in nature, of mild or moderate intensity and resolved after the first few weeks of treatment[3]. Injection site reactions (e.g. rash and erythema) occurred in approximately 2 % of patients participating in five double-blind trials (C26 weeks’ duration), with 0.2 % of patients discontinuing treatment because of these events[4].
In postmarketing surveillance studies there have been reports of acute pancreatitis, including fatal and non-fatal haemorrhagic or necrotizing pancreatitis, in patients treated with liraglutide[3, 4]. In clinical trials, 13 liraglutide recipients and one glimepiride recipient experienced pancreatitis (2.7 vs. 0.5 cases/1,000 patient-years) [3]. Of the 13 liraglutide-treated recipients, nine patients had acute pancreatitis and four had chronic pancreatitis, with some of the 13 patients having other risk factors for pancreatitis, such as a history of cholelithiasis or alcohol abuse. Although clinical causality could not be established, one of the 13-liraglutide recipients had pancreatitis with necrosis that led to death[3].
In clinical trials, seven cases of papillary thyroid carcinoma were reported in liraglutide-treated patients compared one case in a comparator group (1.5 vs. 0.5 cases/ 1,000 patient-years)[3]. Most of these papillary thyroid carcinomas were <1 cm in greatest diameter and were diagnosed in surgical pathology specimens after thyroidectomy prompted by results from protocol-specified screening procedures[3]

References

 

  1. Perry CM. Liraglutide: a review of its use in the management of type 2 diabetes mellitus. Drugs. 2011;71(17):2347–73.
  2. Croom KF, McCormack PL. Liraglutide: a review of its use in type 2 diabetes mellitus. Drugs. 2009;69(14):1985–2004.
  3. Novo Nordisk A/S. Victoza liraglutide (rDNA origin) injection: US prescribing information. 2013. http://www.novo-pi.com/ victoza.pdf. Accessed 20 Aug 2014.
  4. Novo Nordisk A/S. Victoza: EU summary of product characteristics. 2014. http://www.ema.europa.eu/docs/en_GB/document_ library/EPAR_-_Product_Information/human/001026/WC5000500 17.pdf. Accessed 20 Aug 2014.
  5. Flint A, Kapitza C, Zdravkovic M. The once-daily human GLP-1 analogue liraglutide impacts appetite and energy intake in patients with type 2 diabetes after short-term treatment. Diabetes Obes Metab. 2013;15(10):958–62.
  6. Horowitz M, Flint A, Jones KL, et al. Effect of the once-daily human GLP-1 analogue liraglutide on appetite, energy intake, energy expenditure and gastric emptying in type 2 diabetes. Diabetes Res Clin Pract. 2012; 97(2):258–66.
  7. Hermansen K, Baekdal TA, During M, et al. Liraglutide suppresses postprandial triglyceride and apolipoprotein B48 elevations after a fat-rich meal in patients with type 2 diabetes: a randomized, double-blind, placebo-controlled, cross-over trial. Diabetes Obes Metab. 2013;15(11):1040–8.
 

Description

Approaches to treating T2DM, a disease characterized by the dual defect of islet cell dysfunction and insulin resistance, include agents that increase the secretion of insulin by the pancreas (secretagogues), agents that increase the sensitivity of target organs to insulin (sensitizers), and agents that decrease the glucose absorption rate from the gastrointestinal tract.Liraglutide, the GLP-1 receptor agonist to reach the market, possesses a 97% homology to GLP-1 with only two amino acid changes and the addition of a fatty acid side chain. Specifically, the lysine in position 34 has been replaced with an arginine, and the lysine in position 26 has been modified with a C16 acyl chain via a glutamoyl spacer. Liraglutide derives its resistance to DPP-4 degradation from its propensity to form micelles and to bind to albumin. Unlike its predecessor exenatide, which requires two daily subcutaneous injections before the first and last meals of the day, liraglutide is approved as a once-daily treatment regimen and may be used in combination with metformin or a sulfonylurea in patients with insufficient glycemic control with either monotherapy or combined dual therapy. It is also approved in combination with the dual therapy of metformin and a thiazolidinedione in patients with insufficient glycemic control. Liraglutide displayed a binding potency of 61 pM (EC50= 55 pM for GLP-1) for the cloned human GLP-1 receptor.

 

FAQ

 

Q1: Are you a manufacturer?


Yes, Wango Biopharm have concentrated on Organic synthesis over 12 years since 2008.
Advanced R&D technology, 380,000 categories chemical reagent are in stock.
Trading products we will serve for you with our ISO supplier system, making your purchasing risk into the lowest.
In addition, we provide the customization service of a new compound from lab to bulk manufacturing.


Q2: How to contact with us?


You can contact with us on Made-in-China, the Average Response Time is 0-4h on Work time, <24h on Non-work time.
For every inquiry, our sales will provide the one-for-one service for you.


Q3:Which kind of payment do you accept?


Normal orders: Company account(The price will be 5%-13% extra discount)
Sample/small orders: Paypal(The 5-10% extra fee),Western Union etc.
About the payment term, we will negotiate alone.


Q4:How to confirm the Product Quality before placing orders?


1st, you can get free samples for some products, just pay the basic cost for us.
2nd,Also you can send the specification or your quest to us, we will customize the products for you.
3rd,We emphasis that our whole company make a living with organic chemical and customers, we absolutely impossible to sale any fake goods, unqualified goods, it is shame! And None False certificate/lie/illegal thing in our sales net!


Q5:How do you treat quality complaint?


The customer complaint handling procedures is the key part in Our ISO management system. We will set up an investigation team for your complaint, and give the handling plan and our corrective and preventive measures within a limited time.

Q6:Package


We will refer the MSDS to design the package standard and show you at the PI or Quotation list.
If you want customize package and haven't go against the principle of science, we will do as your request. The cost will be calculate your request.
For dangerous goods, only one style of package, we will do as the UN standard.


Q7:Shipping


We have R&D and manufactured chemicals for 12 years, we have rich experience on Shipping, Many famous companies cooperated with us stably, we are good at shipping all kinds of chemicals.
General goods: The best service, price and lead time.
Dangerous goods: The professional cooperated company, the details please check our website.

 

 

Liraglutide 98% Api Active Principle Ingredient Antidiabetic Function 204656-20-2 1

 

 

 

Get in touch with us

Enter Your Message

You Might Be Into These